EPJ Web of Conferences (Jan 2019)

Exciton-Exciton Annihilation as a Mechanism for Uphill Transfer in a Molecular Excitonic System

  • Lincoln Craig N.,
  • Block Matthias,
  • Baudisch Bastian,
  • Malevich Pavel,
  • von Berlepsch Hans,
  • Riedle Eberhard,
  • Hauer Jürgen

DOI
https://doi.org/10.1051/epjconf/201920506017
Journal volume & issue
Vol. 205
p. 06017

Abstract

Read online

Exciton dynamics in a HJ-aggregate of cyanine dye TTBC are investigated by transient absorption with a time resolution of <60 fs and power-dependent emission spectroscopies. Both measurements are consistent with an exciton delocalization length of ~28 monomers. A model assuming diffusive exciton motion reveals that the exciton mobility is at least bimodal and restricted to one spatial dimension. J-band diffusion rates of 2.69 and 2.79e-3 cm2s-1 are found, leading to maximal diffusion lengths of 449 and 14.5 nm. The findings indicate that exciton-exciton annihilation is the origin of effective uphill transfer. This mechanism, if present under solar radiation, maybe useful for organic photovoltaic systems.