Microbiology Spectrum (Aug 2022)

Compositional and Functional Changes in Microbial Communities of Composts Due to the Composting-Related Factors and the Presence of Listeria monocytogenes

  • Hongye Wang,
  • Vijay Shankar,
  • Xiuping Jiang

DOI
https://doi.org/10.1128/spectrum.01845-21
Journal volume & issue
Vol. 10, no. 4

Abstract

Read online

ABSTRACT Listeria monocytogenes is a leading foodborne pathogen that can contaminate fresh produce in farm environment, resulting in deadly outbreaks. Composts contain a diversity of microorganisms, and some of them may be compost-adapted competitive exclusion microorganisms against L. monocytogenes. To understand interactions between compost microflora and the pathogen, both dairy- and poultry-wastes based composts (n = 12) were inoculated with L. monocytogenes, and then analyzed by next-generation sequencing approaches along with culturing methods. DNA extraction and enumeration of L. monocytogenes were performed at 0 and 72 h post-incubation at room temperature. The major bacterial phyla were identified as Firmicutes (23%), Proteobacteria (23%), Actinobacteria (19%), Chloroflexi (13%), Bacteroidetes (12%), Gemmatimonadetes (2%), and Acidobacteria (2%). The top three indicator genera enriched in different compost types were identified by LEfSe with LDA score > 2. The interactions between L. monocytogenes and indigenous microflora were limited as no significant changes in the dominant microbial members in compost ecosystem, but some discriminatory species such as Bacillus, Geobacillus, and Brevibacterium were identified by Random Forest analysis. Besides, changes in metabolic pathways and the increased abundance of bacteriocins category in the compost samples containing L. monocytogenes after 72 h postinoculation were revealed by metatranscriptomic sequencing. Taken together, the compost-related factors such as compost types, composting stages, and the collection farms are major drivers that affect compost microbial compositions, and the analysis of compost metagenome implied that interactions between L. monocytogenes and compost microflora may include competition for nutrients and the presence of antimicrobials. IMPORTANCE Listeria monocytogenes has been recognized as the etiological agent causing foodborne disease outbreaks, with fresh produce as vulnerable for contamination at even preharvest stage. Owing to the richness in microbial community, compost may mediate suppression of pathogens. In this study, the impact of compost-related factors and L. monocytogenes intrusion on dynamic changes in compost microbiome was investigated by next generation sequencing techniques. The compost-related factors such as compost types, composting stages, and the collection farms are major drivers that affect compost microbiome. The interactions between L. monocytogenes and compost microflora may include the competition for nutrients and the presence of antimicrobials produced by native compost microorganisms as potential competitive exclusion microorganisms. Findings from this study are important for the composting industry to understand the composition and functionality of microbial community in their products and help developing organic fertilizers fortified with anti-L. monocytogenes competitive exclusion microorganisms.

Keywords