Remote Sensing (Jun 2020)
Detailed Lacustrine Calving Iceberg Inventory from Very High Resolution Optical Imagery and Object-Based Image Analysis
Abstract
In the field of iceberg and glacier calving studies, it is important to collect comprehensive datasets of populations of icebergs. Particularly, calving of lake-terminating glaciers has been understudied. The aim of this work is to present an object-based method of iceberg detection and to create an inventory of icebergs located in a proglacial lagoon of San Quintín glacier, Northern Patagonia Icefield, Chile. This dataset is created using high-resolution WorldView-2 imagery and a derived DEM. We use it to briefly discuss the iceberg size distribution and area–volume scaling. Segmentation of the multispectral imagery produced a map of objects, which were classified with use of Random Forest supervised classification algorithm. An intermediate classification product was corrected with a ruleset exploiting contextual information and a watershed algorithm that was used to divide multiple touching icebergs into separate objects. Common theoretical heavy-tail statistical distributions were tested as descriptors of iceberg area and volume distributions. Power law models were proposed for the area–volume relationship. The proposed method performed well over the open lake detecting correctly icebergs in all size bands except 5–15 m2 where many icebergs were missed. A section of the lagoon with ice melange was not reliably mapped due to uniformity of the area in the imagery and DEM. The precision of the DEM limited the scaling effort to icebergs taller than 1.7 m and larger than 99 m2, despite the inventory containing icebergs as small as 4 m2. The work demonstrates viability of object-based analysis for lacustrine iceberg detection and shows that the statistical properties of iceberg population at San Quintín glacier match those of populations produced by tidewater glaciers.
Keywords