Polymers (Jan 2024)

The Phenotype of Mesenchymal Stromal Cell and Articular Chondrocyte Cocultures on Highly Porous Bilayer Poly-L-Lactic Acid Scaffolds Produced by Thermally Induced Phase Separation and Supplemented with Hydroxyapatite

  • Wally Ferraro,
  • Aurelio Civilleri,
  • Clemens Gögele,
  • Camilla Carbone,
  • Ilenia Vitrano,
  • Francesco Carfi Pavia,
  • Valerio Brucato,
  • Vincenzo La Carrubba,
  • Christian Werner,
  • Kerstin Schäfer-Eckart,
  • Gundula Schulze-Tanzil

DOI
https://doi.org/10.3390/polym16030331
Journal volume & issue
Vol. 16, no. 3
p. 331

Abstract

Read online

Bilayer scaffolds could provide a suitable topology for osteochondral defect repair mimicking cartilage and subchondral bone architecture. Hence, they could facilitate the chondro- and osteogenic lineage commitment of multipotent mesenchymal stromal cells (MSCs) with hydroxyapatite, the major inorganic component of bone, stimulating osteogenesis. Highly porous poly-L-lactic acid (PLLA) scaffolds with two layers of different pore sizes (100 and 250 µm) and hydroxyapatite (HA) supplementation were established by thermally induced phase separation (TIPS) to study growth and osteogenesis of human (h) MSCs. The topology of the scaffold prepared via TIPS was characterized using scanning electron microscopy (SEM), a microCT scan, pycnometry and gravimetric analysis. HMSCs and porcine articular chondrocytes (pACs) were seeded on the PLLA scaffolds without/with 5% HA for 1 and 7 days, and the cell attachment, survival, morphology, proliferation and gene expression of cartilage- and bone-related markers as well as sulfated glycosaminoglycan (sGAG) synthesis were monitored. All scaffold variants were cytocompatible, and hMSCs survived for the whole culture period. Cross-sections revealed living cells that also colonized inner scaffold areas, producing an extracellular matrix (ECM) containing sGAGs. The gene expression of cartilage and bone markers could be detected. HA represents a cytocompatible supplement in PLLA composite scaffolds intended for osteochondral defects.

Keywords