Sustainable Chemistry (Mar 2023)
Synergetic Effect of Chemical Coagulation and Electroflotation on Synthetic Palm Oil Mill Effluent Treatment
Abstract
Palm oil mill effluent (POME) is considered the most environmentally harmful when discharged without proper treatment. In addition to conventional biological treatment methods, physicochemical treatment techniques are considered alternative methods to treat POME as polishing or post-treatment techniques to meet the discharge water quality standards set by authorities. Recently, electroflotation (EF) has gained popularity in wastewater treatment owing to its high efficiency, no harmful by-products, and ease of operation. However, EF has limitations on energy consumption because high current density and long electrolysis time are often used to increase the density of gas bubbles and metallic ions produced in the EF system used in pollutant removal. Polyaluminum chloride (PAC) and cationic polyacrylamide (CPAM) are used as alternative options for the production of coagulants instead of using a sacrificial anode in EF. In this study, we hypothesized that PAC and CPAM could enhance the efficiency and reduce the specific energy consumption of EF by minimizing the electrolysis time used in POME treatment. The effects of electrolysis time, current density, and coagulant dosage on POME treatment were investigated. EF treatment at a current density of 2.5 mA/cm2 has achieved 82% of turbidity and 47% of chemical oxygen demand (COD) removal after 45 min electrolysis time, consuming 0.014 kWh of specific energy for the treatment of one gram of COD. There was no improvement in terms of turbidity removal when the current density was increased from 2.5 to 5 mA/cm2; however, the COD removal efficiency was increased up to 52% at 5 mA/cm2. When EF was performed at 1 A combined with PAC at a dosage of 40 mg/L and CPAM at a dosage of 20 mg/L, it was noticed that turbidity and COD removal increased up to 96% and 54%, respectively, within 15 min electrolysis. Subsequently, the specific energy consumption was reduced to 0.004 kWh (by 71%) per one gram of COD treatment. Results confirmed that the chemical coagulants could increase the POME treatment efficiency and reduce the specific energy consumption of EF. However, this method can be improved aiming at further reduction of COD by mineralizing the dissolved organic compounds to fulfill the POME discharge quality standards.
Keywords