Acta Universitatis Sapientiae: Mathematica (Aug 2018)

On a quadratic type functional equation on locally compact abelian groups

  • Dimou Hajira,
  • Aribou Youssef,
  • Chahbi Abdellatif,
  • Kabbaj Samir

DOI
https://doi.org/10.2478/ausm-2018-0004
Journal volume & issue
Vol. 10, no. 1
pp. 46 – 55

Abstract

Read online

Let (G,+) be a locally compact abelian Hausdorff group, 𝓀 is a finite automorphism group of G, κ = card𝒦 and let µ be a regular compactly supported complex-valued Borel measure on G such that μ(G)=1κ$\mu ({\rm{G}}) = {1 \over \kappa }$. We find the continuous solutions f, g : G → ℂ of the functional equation ∑k∈𝒦∑λ∈𝒦∫Gf(x+k⋅y+λ⋅s)dμ(s)=g(y)+κf(x), x,y∈G,$$\sum\limits_{k \in {\cal K}} {\sum\limits_{\lambda \in {\cal K}} {\int_{\rm{G}} {{\rm{f}}({\rm{x}} + {\rm{k}} \cdot {\rm{y}} + } \lambda \cdot {\rm{s}}){\rm{d}}\mu ({\rm{s}}) = {\rm{g}}({\rm{y}}) + \kappa {\rm{f}}({\rm{x}}),\,{\rm{x}},{\rm{y}} \in {\rm{G}},} } $$ in terms of k-additive mappings. This equations provides a common generalization of many functional equations (quadratic, Jensen’s, Cauchy equations).

Keywords