Biological Research (Nov 2019)

PDIL1-2 can indirectly and negatively regulate expression of the AGPL1 gene in bread wheat

  • Jie Dong,
  • Yongxing Zheng,
  • Yihan Fu,
  • Jinxi Wang,
  • Shasha Yuan,
  • Yonghua Wang,
  • Qidi Zhu,
  • Xingqi Ou,
  • Gezi Li,
  • Guozhang Kang

DOI
https://doi.org/10.1186/s40659-019-0263-2
Journal volume & issue
Vol. 52, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background ADP-glucose pyrophosphorylase (AGPase), the key enzyme in plant starch biosynthesis, is a heterotetramer composed of two identical large subunits and two identical small subunits. AGPase has plastidial and cytosolic isoforms in higher plants, whereas it is mainly detected in the cytosol of grain endosperms in cereal crops. Our previous results have shown that the expression of the TaAGPL1 gene, encoding the cytosolic large subunit of wheat AGPase, temporally coincides with the rate of starch accumulation and that its overexpression dramatically increases wheat AGPase activity and the rate of starch accumulation, suggesting an important role. Methods In this study, we performed yeast one-hybrid screening using the promoter of the TaAGPL1 gene as bait and a wheat grain cDNA library as prey to screen out the upstream regulators of TaAGPL1 gene. And the barley stripe mosaic virus-induced gene-silencing (BSMV-VIGS) method was used to verify the functional characterization of the identified regulators in starch biosynthesis. Results Disulfide isomerase 1-2 protein (TaPDIL1-2) was screened out, and its binding to the TaAGPL1-1D promoter was further verified using another yeast one-hybrid screen. Transiently silenced wheat plants of the TaPDIL1-2 gene were obtained by using BSMV-VIGS method under field conditions. In grains of BSMV-VIGS-TaPDIL1-2-silenced wheat plants, the TaAGPL1 gene transcription levels, grain starch contents, and 1000-kernel weight also significantly increased. Conclusions As important chaperones involved in oxidative protein folding, PDIL proteins have been reported to form hetero-dimers with some transcription factors, and thus, our results suggested that TaPDIL1-2 protein could indirectly and negatively regulate the expression of the TaAGPL1 gene and function in starch biosynthesis.

Keywords