MATEC Web of Conferences (Jan 2018)
Location-dependent User Selection Based on Sum Rate Approximation in Large System Regime for Massive MIMO
Abstract
Massive MIMO with multiple BS antennas can give simultaneous service for multiple user equipments (UEs) that are widely considered in massive connectivity to meet high data rate requirements. User selection is critical to optimize the overall performance of MIMO systems in various scenarios and has been extensively studied in cellular networks to guarantee service for users. In the previous study, location-dependent user selection (LUS) had extremely low computational complexity which is capable to enhance sum rate performance, but there are many environmental condition assumptions that make this algorithm does not reflect real conditions. In this research, we proposed modified LUS with approximations of sum rate in large system regimes by adding the sum ergodic of the distance from one user to another which enhance sum rate performance. In addition, we vary the user environment that was ignored in previous research by varying the path loss exponent values. In this research, we focus modify on sub-urban areas with each UEs having different environmental conditions. The selection scheme is equipped with spatial correlation fading on the transmitter side MIMO antenna. The simulation shows an increase in sum rate between 0.0012 to 0.3935 in perfect CSI. For the imperfect CSI with antenna correlation coefficient for power at 30 dBm is 0.5 when 32x64 antennas is 14 optimal active UEs with sum rate is 23.4207 bps/Hz. For cases where the user is located in different positions with different environmental circumstances, with 32x64 antennas showing the highest sum rate is 24.8436 bps/Hz with 17 optimal UEs.