Energies (Jun 2020)
Solving the Stochastic Generation and Transmission Capacity Planning Problem Applied to Large-Scale Power Systems Using Generalized Shift-Factors
Abstract
In this study, we successfully develop the transmission planning problem of large-scale power systems based on generalized shift-factors. These distribution factors produce a reduced solution space which does not need the voltage bus angles to model new transmission investments. The introduced formulation copes with the stochastic generation and transmission capacity expansion planning problem modeling the operational problem using a 24-hourly load behaviour. Results show that this formulation achieves an important reduction of decision variables and constraints in comparison with the classical disjunctive transmission planning methodology known as the Big M formulation without sacrificing optimality. We test both the introduced and the Big M formulations to find out convergence and time performance using a commercial solver. Finally, several test power systems and extensive computational experiments are conducted to assess the capacity planning methodology. Solving deterministic and stochastic problems, we demonstrate a prominent reduction in the solver simulation time especially with large-scale power systems.
Keywords