E3S Web of Conferences (Jan 2021)
Multi-energy load forecasting model based on bi-directional gated recurrent unit multi-task neural network
Abstract
The complex coupling, coordination and complementarity of different energy in the integrated energy system puts forward higher requirements for the technology of multi-energy load forecasting. To this end, this paper proposes a novel multi-energy load forecasting model based on bi-directional gated recurrent unit (BiGRU) multi-task neural network. Firstly, through the correlation analysis, an effective multi-energy load input data set is constructed. Secondly, the input data set is utilized to train the BiGRU and master the evolution laws of multi-energy loads. Then, multi-task learning (MTL) is used to share the information learned by BiGRU from perspectives of different load forecasting tasks, so as to fully dig the coupling relations among various energy loads. Finally, different types of load forecasting results can be obtained. Simulation results show that BiGRU can simultaneously consider the known data of the past and the future, and it can learn more characteristic information effectively. At the same time, the proposed model utilizes MTL to carry out parallel learning and information sharing for forecasting tasks of various energy loads, which can dig the complex coupling relations among different types of loads more deeply, thus improving the forecasting accuracy of multi-energy loads.