International Journal of Technology (Feb 2024)

Physical and Chemical Characterization of Collagen/Alginate/Poly(Vinyl Alcohol) Scaffold with the Addition of Multi-Walled Carbon Nanotube, Reduced Graphene Oxide, Titanium Dioxide, and Zinc Oxide Materials

  • Rusyda Fajarani,
  • Siti Fauziyah Rahman,
  • Azizah Intan Pangesty,
  • Puspita Anggraini Katili,
  • Don-Hee Park,
  • Basari

DOI
https://doi.org/10.14716/ijtech.v15i2.6693
Journal volume & issue
Vol. 15, no. 2
pp. 332 – 341

Abstract

Read online

Bone damage is one of the main causes of disability in humans, and tissue engineering technology by applying biomaterial-based scaffold has been developed as an effective solution. This can be achieved using various natural and synthetic polymers combined with carbon-based and metal-oxide materials. Therefore, this study aimed to develop bone scaffold using collagen, alginate, and poly(vinyl alcohol), with the addition of multi-walled carbon nanotube, reduced graphene oxide, titanium dioxide, and zinc oxide materials. Scaffold was fabricated with the freeze-drying method and characterized physicochemically by observing the morphology through scanning electron microscopy (SEM), identification of functional groups by Fourier transform infrared spectroscopy (FTIR), compressive mechanical properties, porosity, and degradation rate. The results showed that each group of scaffold had a compact structure, with a small pore size and less than 50% porosity. The functional groups of each material were detected, and the compressive strength matched the trabecular bone, approximately 6 MPa. However, the scaffold lacked appropriate porosity and a fast degradation rate exceeding 35% in 7 days. 

Keywords