Resuscitation Plus (Jun 2024)

Prediction of outcomes after cardiac arrest by a generative artificial intelligence model

  • Simon A. Amacher,
  • Armon Arpagaus,
  • Christian Sahmer,
  • Christoph Becker,
  • Sebastian Gross,
  • Tabita Urben,
  • Kai Tisljar,
  • Raoul Sutter,
  • Stephan Marsch,
  • Sabina Hunziker

Journal volume & issue
Vol. 18
p. 100587

Abstract

Read online

Aims: To investigate the prognostic accuracy of a non-medical generative artificial intelligence model (Chat Generative Pre-Trained Transformer 4 - ChatGPT-4) as a novel aspect in predicting death and poor neurological outcome at hospital discharge based on real-life data from cardiac arrest patients. Methods: This prospective cohort study investigates the prognostic performance of ChatGPT-4 to predict outcomes at hospital discharge of adult cardiac arrest patients admitted to intensive care at a large Swiss tertiary academic medical center (COMMUNICATE/PROPHETIC cohort study). We prompted ChatGPT-4 with sixteen prognostic parameters derived from established post-cardiac arrest scores for each patient. We compared the prognostic performance of ChatGPT-4 regarding the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values, and likelihood ratios of three cardiac arrest scores (Out-of-Hospital Cardiac Arrest [OHCA], Cardiac Arrest Hospital Prognosis [CAHP], and PROgnostication using LOGistic regression model for Unselected adult cardiac arrest patients in the Early stages [PROLOGUE score]) for in-hospital mortality and poor neurological outcome. Results: Mortality at hospital discharge was 43% (n = 309/713), 54% of patients (n = 387/713) had a poor neurological outcome. ChatGPT-4 showed good discrimination regarding in-hospital mortality with an AUC of 0.85, similar to the OHCA, CAHP, and PROLOGUE (AUCs of 0.82, 0.83, and 0.84, respectively) scores. For poor neurological outcome, ChatGPT-4 showed a similar prediction to the post-cardiac arrest scores (AUC 0.83). Conclusions: ChatGPT-4 showed a similar performance in predicting mortality and poor neurological outcome compared to validated post-cardiac arrest scores. However, more research is needed regarding illogical answers for potential incorporation of an LLM in the multimodal outcome prognostication after cardiac arrest.

Keywords