Vehicles (Sep 2023)

Modelling and Simulation of Aerodynamic Cylindrical Bearings Using ANSYS Hydrodynamic Bearing Element Types

  • Katrin Baumann,
  • Hermann Freund

DOI
https://doi.org/10.3390/vehicles5030061
Journal volume & issue
Vol. 5, no. 3
pp. 1118 – 1132

Abstract

Read online

Modern power engine concepts and environmental restrictions demand oil-free lubrication of rotors, for example, by gas bearings. However, the stiffness and damping properties ruling the rotor’s dynamics are poorly documented for aerodynamic bearings and simple calculation methods are lacking. Based on the similarity between aerodynamic and hydrodynamic journal bearings, it is investigated to what extent the hydrodynamic bearing element types of the commercial FE program ANSYS are also suitable for air bearings. Within these elements, the compressibility of the gas is neglected. After verification of the ANSYS hydrodynamic element types with literature data for cylindrical hydrodynamic bearings, the stiffness and damping coefficients of a cylindrical aerodynamic bearing are calculated by using the ANSYS hydrodynamic element types. In the examined speed range, the results agree well with literature data that consider gas compressibility. Therefore, the FE elements designed for hydrodynamical journal bearings may also be used for simulating cylindrical aerodynamic bearings. The presented calculation approach provides a compact and easy-to-use method for rotordynamic simulations with cylindrical aerodynamic bearings in a single development environment.

Keywords