AIMS Mathematics (Sep 2022)
Dissipative Williamson fluid flow with double diffusive Cattaneo-Christov model due to a slippery stretching sheet embedded in a porous medium
Abstract
A numerical analysis of the incompressible two-dimensional flow of a non-Newtonian Williamson fluid is offered by expanding the sheet embedded in a porous medium and combining it with the Cattaneo-Christov model. Additionally, it is considered that the thermal conductivity and fluid viscosity both change as a linear function of temperature and an exponential function, respectively. The velocity, temperature and concentration field are all affected by thermal radiation, viscous dissipation, fluid variable properties, chemical reactions, and the slip velocity phenomenon. When the appropriate variables are employed, a system of non-linear, non-dimensional parameters emerges. The shooting method is used to numerically address this system. To better comprehend the impact of dimensionless parameters on dimensionless velocity, concentration, and temperature profiles, physical descriptions are prepared and justified using graphical representations. The values of the local skin-friction coefficient, the rate of heat transfer, and the rate of mass transfer are also investigated using tables. The behavior of changing fluid properties, on the other hand, establishes the link between Williamson fluid flow and the rate of heat mass transfer. According to the results, increasing the slip velocity and viscosity factors lowers both the Nusselt number and the Sherwood number. Also, due to an increase in Deborah number and the chemical reaction parameter, the temperature profiles decrease.
Keywords