iScience (Jun 2024)

Enhanced and sustained T cell activation in response to fluid shear stress

  • Nicole S. Sarna,
  • Shanay H. Desai,
  • Benjamin G. Kaufman,
  • Natalie M. Curry,
  • Anne M. Hanna,
  • Michael R. King

Journal volume & issue
Vol. 27, no. 6
p. 109999

Abstract

Read online

Summary: The efficacy of T cell therapies in treating solid tumors is limited by poor in vivo persistence, proliferation, and cytotoxicity, which can be attributed to limited and variable ex vivo activation. Herein, we present a 10-day kinetic profile of T cells subjected to fluid shear stress (FSS) ex vivo, with and without stimulation utilizing bead-conjugated anti-CD3/CD28 antibodies. We demonstrate that mechanical stimulation via FSS combined with bead-bound anti-CD3/CD28 antibodies yields a synergistic effect, resulting in amplified and sustained downstream signaling (NF-κB, c-Fos, and NFAT), expression of activation markers (CD69 and CD25), proliferation and production of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2). This study represents the first characterization of the dynamic response of primary T cells to FSS. Collectively, our findings underscore the critical role of mechanosensitive ion channel-mediated mechanobiological signaling in T cell activation and fitness, enabling the development of strategies to address the current challenges associated with poor immunotherapy outcomes.

Keywords