Total Flavonoids from <i>Camellia oleifera</i> Alleviated <i>Mycoplasma pneumoniae</i>-Induced Lung Injury via Inhibition of the TLR2-Mediated NF-κB and MAPK Pathways
Nan Ding,
Aihua Lei,
Zhisheng Shi,
Lin Xiang,
Bo Wei,
Yimou Wu
Affiliations
Nan Ding
Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
Aihua Lei
Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
Zhisheng Shi
Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
Lin Xiang
Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
Bo Wei
Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
Yimou Wu
Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
Mycoplasma pneumoniae (M. pneumoniae) is an atypical bacterial pathogen responsible for community-acquired pneumonia primarily among school-aged children and young adults. Camellia oleifera (C. oleifera) has been used as a medicinal and edible plant in China for centuries, the constituents from which possessed various bioactivities. Notably, flavonoids existing in residues of C. oleifera defatted seeds exhibited significant anti-inflammatory activities. In the present study, we investigated the impact of total flavonoids from C. oleifera (TFCO) seed extract on M. pneumoniae pneumonia. TFCO was obtained using multiple column chromatography methods and identified as kaempferol glycosides via UPLC-HRESIMS. In a M. pneumoniae pneumonia mouse model, TFCO significantly reduced the lung damage, suppressed IL-1β, IL-6, and TNF-α production, and curbed TLR2 activation triggered by M. pneumoniae. Similarly, in RAW264.7 macrophage cells stimulated by lipid-associated membrane proteins (LAMPs), TFCO suppressed the generation of proinflammatory cytokines and TLR2 expression. Moreover, TFCO diminished the phosphorylation of IκBα, JNK, ERK, p38, and p65 nuclear translocation in vitro. In conclusion, TFCO alleviated M. pneumoniae-induced lung damage via inhibition of TLR2-mediated NF-κB and MAPK pathways, suggesting its potential therapeutic application in M. pneumoniae-triggered lung inflammation.