IEEE Photonics Journal (Jan 2022)

Orthogonal Frequency Division Multiplexing With Index Modulation Based on Discrete Hartley Transform in Visible Light Communications

  • Xian-Ying Xu,
  • Qi Zhang,
  • Dian-Wu Yue

DOI
https://doi.org/10.1109/JPHOT.2022.3174283
Journal volume & issue
Vol. 14, no. 3
pp. 1 – 10

Abstract

Read online

This paper investigates optical orthogonal frequency division multiplexing (O-OFDM) systems with index modulation (IM) based on discrete Hartley transform (DHT) for visible light communications (VLC). An interesting trade-off between spectral efficiency (SE), energy efficiency, peak-to-average power ratio (PAPR) and bit error rate (BER) performance can be made by using the IM technique. And the DHT-based O-OFDM-IM systems can achieve higher SE compared with the DFT (discrete Fourier transform)-based counterparts. Employing DHT instead of DFT enables the removal of the Hermitian symmetry requirement, which contributes to transmitting more index bits and results in SE improvement. To acquire the same SE, the proposed systems can significantly lower the constellation order leading to better BER performance by contrast with the DFT-based counterparts. We employ DC (direct current) biasing and AC (Asymmetrically clipped) techniques to investigate the O-OFDM-IM systems in this paper. Simulation results indicate that SNR gains can be obtained by the DHT-based DCO/ACO-IM in comparison to the DFT-based counterparts. We also propose a novel reduced-complexity ML (maximum likelihood) detector specifically applicable to VLC. The new detector exhibits the same BER performance as the ML detector and performs better than the LLR (log-likelihood ratio) detector with reduced computational complexity.

Keywords