Molecular Plant-Microbe Interactions (Feb 2002)
Fdb1 and Fdb2, Fusarium verticillioides Loci Necessary for Detoxification of Preformed Antimicrobials from Corn
Abstract
Fusarium verticillioides is a fungus of significant economic importance because of its deleterious effects on plant and animal health and on the quality of their products. Corn (Zea mays) is the primary host for F. verticillioides, and we have investigated the impact of the plant's antimicrobial compounds (DIMBOA, DIBOA, MBOA, and BOA) on fungal virulence and systemic colonization. F. verticillioides is able to metabolize these antimicrobials, and genetic analyses indicated two loci, Fdb1 and Fdb2, were involved in detoxification. Mutation at either locus caused sensitivity and no detoxification. In vitro physiological complementation assays resulted in detoxification of BOA and suggested that an unknown intermediate compound was produced. Production of the intermediate compound involved Fdb1, and a lesion in fdb2 preventing complete metabolism of BOA resulted in transformation of the intermediate into an unidentified metabolite. Based on genetic and physiological data, a branched detoxification pathway is proposed. Use of genetically characterized detoxifying and nondetoxifying strains indicated that detoxification of the corn antimicrobials was not a major virulence factor, since detoxification was not necessary for development of severe seedling blight or for infection and endophytic colonization of seedlings. Production of the antimicrobials does not appear to be a highly effective resistance mechanism against F. verticillioides.
Keywords