Plant Methods (Jan 2021)

New field wind manipulation methodology reveals adaptive responses of steppe plants to increased and reduced wind speed

  • Shudong Zhang,
  • Guofang Liu,
  • Qingguo Cui,
  • Zhenying Huang,
  • Xuehua Ye,
  • Johannes H. C. Cornelissen

DOI
https://doi.org/10.1186/s13007-020-00705-2
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Wind strongly impacts plant growth, leaf traits, biomass allocation, and stem mechanical properties. However, whether there are common whole-plant wind responses among different plant species is still unclear. We tested this null hypothesis by exposing four eudicot steppe species to three different wind treatments in a field experiment: reduced wind velocity using windbreaks, ambient wind velocity, and enhanced wind velocity through a novel methodology using wind-funneling baffles. Results Across the four species, wind generally decreased plant height, projected crown area, and stepwise bifurcation ratio, and increased root length and stem base diameter. In contrast, the response patterns of shoot traits, especially mechanical properties, to wind velocity were idiosyncratic among species. There was no significant difference in total biomass among different treatments; this might be because the negative effects on heat dissipation and photosynthesis of low wind speed during hot periods, could counteract positive effects during favorable cooler periods. Conclusions There are common wind response patterns in plant-size-related traits across different steppe species, while the response patterns in shoot traits vary among species. This indicates the species-specific ways by which plants balance growth and mechanical support facing wind stress. Our new field wind manipulation methodology was effective in altering wind speed with the intended magnitude. Especially, our field wind-funneling baffle system showed a great potential for use in future field wind velocity enhancement. Further experiments are needed to reveal how negative and positive effects play out on whole-plant performance in response to different wind regimes, which is important as ongoing global climatic changes involve big changes in wind regimes.

Keywords