APL Materials (Jul 2023)

Thermodynamic route of Nb3Sn nucleation: Role of oxygen

  • Zeming Sun,
  • Darrah K. Dare,
  • Zhaslan Baraissov,
  • David A. Muller,
  • Michael O. Thompson,
  • Matthias U. Liepe

DOI
https://doi.org/10.1063/5.0157659
Journal volume & issue
Vol. 11, no. 7
pp. 071118 – 071118-7

Abstract

Read online

Intermetallic Nb3Sn alloys have long been believed to form through Sn diffusion into Nb. However, our observations of significant oxygen content in Nb3Sn prompted an investigation of alternative formation mechanisms. Through experiments involving different oxide interfaces (clean HF-treated, native oxidized, and anodized), we demonstrate a thermodynamic route that fundamentally challenges the conventional Sn diffusion mechanism for Nb3Sn nucleation. Our results highlight the critical involvement of a SnOx intermediate phase. This new nucleation mechanism identifies the principles for growth optimization and new synthesis of high-quality Nb3Sn superconductors.