Molecules (Aug 2024)

Slowing Down the “Magic Bullet”: Encapsulation of Imatinib in Fe-MOF for Cardiotoxicity Reduction and Improvement in Anticancer Activity

  • Weronika Strzempek,
  • Elżbieta Menaszek,
  • Monika Papież,
  • Barbara Gil

DOI
https://doi.org/10.3390/molecules29163818
Journal volume & issue
Vol. 29, no. 16
p. 3818

Abstract

Read online

Imatinib, a small molecule kinase inhibitor, is used as a cancer growth blocker. However, one of its most serious side effects is congestive cardiac failure. Reducing drug toxicity may be achieved through the use of drug delivery systems. Biocompatible metal-organic framework (MOF) materials, namely FeMIL-100 and FeMIL-101-NH2, were employed as potential imatinib carriers. They efficiently delivered the drug as an anticancer agent while minimizing cardiotoxicity. Notably, the release of imatinib from FeMIL-100 was rapid in acidic conditions and slower in pH-neutral environments, allowing targeted delivery to cancer cells. The carrier’s pH-dependent stability governed the drug release mechanism. Two release models—Korsmeyer–Peppas and Weibull—were fitted to the experimental data and discussed in terms of drug release from a rigid microporous matrix. Cytotoxicity tests were conducted on two cell lines: HL60 (a model cell line for acute myeloid leukemia) and H9c2 (a cell line for cardiomyocytes). Overall, the metal-organic framework (MOF) carriers mitigated imatinib’s adverse effects without compromising its effectiveness.

Keywords