Progress in Fishery Sciences (Jun 2024)

Burrowing and Feeding Responses of Different Populations of Sinonovacula constricta to High-Salt Culture Environment

  • Xinxin DU,
  • Donghong NIU,
  • Shuyuan ZHANG,
  • Min DENG,
  • Jie WANG,
  • Jiale LI

DOI
https://doi.org/10.19663/j.issn2095-9869.20221228001
Journal volume & issue
Vol. 45, no. 3
pp. 203 – 213

Abstract

Read online

The razor clam (Sinonovacula constricta, Class Bivalvia) is a kind of burial filter-feeding shellfish. Salinity fluctuation is an important source of pressure for water habitats. High salinity in some coastal areas of Shandong and Jiangsu impact the survival and germplasm conservation of razor clam. To study the ecological behavior response of S. constricta to high salt culture environment, two populations of razor clams were used, including "Shenzhe No.1" population (SZSC) and a natural population (ZRSC). The semi-lethal salinity level of each population was determined. The effects of control group (20) and high salinity (24, 28, 32) on burrowing and feeding behavior of razor clams were studied. The differences in burrowing indices and feeding physiology between the two populations were compared. In the burrowing behavior experiment, two groups were set; razor clams from the temporary pond were put into each salinity group to start the experiment, while the other group of razor clams were stressed under each salinity condition for 24 h and then put into each salinity group to start the experiment. The results showed that the 120 h LC50 of SZSC was 34.04, while the 120 h LC50 of ZRSC was 32.04. The burrowing behavior of razor clams could be divided into four periods: The preparation period of shell closure, the period of axe foot movement, mud digging period, and the end period of mud diving. In the non-stressed group, the burrowing time of 50% (BT50) of SZSC was significantly higher than that of ZRSC (P0.05). The BT50 of SZSC was closer to that of the control group at 24 and 28 salinity, and the vitality of SZSC was significantly better than that of ZRSC after 24 h of salinity stress. Under high salinity, the distribution of SZSC in mud was more concentrated than that in ZRSC, and the burrowing depth was shallower. In terms of feeding physiology, the feeding rate of SZSC was significantly higher than that of ZRSC under high salinity (P<0.05). The feeding rate of SZSC reached the maximum 89.54 mL/(g·h) at 24 salinity, which was significantly higher than that of other salinity groups (P<0.05). In summary, the ecological behaviors of both populations were affected by high salinity. The higher the salinity, the stronger the stress response, with the SZSC having a higher salinity tolerance than ZRSC. In this study, the tolerance of two populations of razor clams to high salinity was evaluated at the level of ecological behavior, and the vertical distribution and feeding ability of S. constricta in sediment in a high-salt environment was revealed. The results provide a theoretical reference for the further breeding of novel high-salt-tolerant strains of S. constricta.

Keywords