Toxins (Jul 2024)
Resistance of Lepidopteran Pests to <i>Bacillus thuringiensis</i> Toxins: Evidence of Field and Laboratory Evolved Resistance and Cross-Resistance, Mode of Resistance Inheritance, Fitness Costs, Mechanisms Involved and Management Options
Abstract
Bacillus thuringiensis (Bt) toxins are potential alternatives to synthetic insecticides for the control of lepidopteran pests. However, the evolution of resistance in some insect pest populations is a threat and can reduce the effectiveness of Bt toxins. In this review, we summarize the results of 161 studies from 20 countries reporting field and laboratory-evolved resistance, cross-resistance, and inheritance, mechanisms, and fitness costs of resistance to different Bt toxins. The studies refer mainly to insects from the United States of America (70), followed by China (31), Brazil (19), India (12), Malaysia (9), Spain (3), and Australia (3). The majority of the studies revealed that most of the pest populations showed susceptibility and a lack of cross-resistance to Bt toxins. Factors that delay resistance include recessive inheritance of resistance, the low initial frequency of resistant alleles, increased fitness costs, abundant refuges of non-Bt, and pyramided Bt crops. The results of field and laboratory resistance, cross-resistance, and inheritance, mechanisms, and fitness cost of resistance are advantageous for predicting the threat of future resistance and making effective strategies to sustain the effectiveness of Bt crops.
Keywords