Nature Communications (Sep 2024)

A singlet-triplet hole-spin qubit in MOS silicon

  • S. D. Liles,
  • D. J. Halverson,
  • Z. Wang,
  • A. Shamim,
  • R. S. Eggli,
  • I. K. Jin,
  • J. Hillier,
  • K. Kumar,
  • I. Vorreiter,
  • M. J. Rendell,
  • J. Y. Huang,
  • C. C. Escott,
  • F. E. Hudson,
  • W. H. Lim,
  • D. Culcer,
  • A. S. Dzurak,
  • A. R. Hamilton

DOI
https://doi.org/10.1038/s41467-024-51902-9
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Holes in silicon quantum dots are promising for spin qubit applications due to the strong intrinsic spin-orbit coupling. The spin-orbit coupling produces complex hole-spin dynamics, providing opportunities to further optimise spin qubits. Here, we demonstrate a singlet-triplet qubit using hole states in a planar metal-oxide-semiconductor double quantum dot. We demonstrate rapid qubit control with singlet-triplet oscillations up to 400 MHz. The qubit exhibits promising coherence, with a maximum dephasing time of 600 ns, which is enhanced to 1.3 μs using refocusing techniques. We investigate the magnetic field anisotropy of the eigenstates, and determine a magnetic field orientation to improve the qubit initialisation fidelity. These results present a step forward for spin qubit technology, by implementing a high quality singlet-triplet hole-spin qubit in planar architecture suitable for scaling up to 2D arrays of coupled qubits.