Applied Sciences (May 2024)

Multiphase Numerical CFD Simulation of the Hydrothermal Liquefaction Process (HTL) of Sewage Sludge in a Tubular Reactor

  • Artur Wodołażski

DOI
https://doi.org/10.3390/app14114513
Journal volume & issue
Vol. 14, no. 11
p. 4513

Abstract

Read online

This article presents multiphase numerical computational fluid dynamics (CFD) for simulating hydrothermal liquefaction of sewage sludge in a continuous plug-flow reactor. The discrete particle method (DPM) was used to analyze the solid particles’ interaction in liquid–solid high shear flows to investigate coupling computational fluid dynamics (CFD). Increasing solid particles’ interactions were observed with the increasing liquid velocity. The study examined the influence of parameters such as flow rate, temperature, and residence time on the efficiency of bio-oil production. An increase in temperature from 500 to 800 K caused an increase in the amount of biocrude oil produced from 12.4 to 32.9% within 60 min. In turn, an increase in the flow rate of the suspension from 10 to 60 mL/min caused a decrease in the amount of biocrude oil produced from 38.9 to 12.9%. This study offers insights into optimizing the flow channel of tubular reactors to enhance the HTL conversion efficiency of sewage sludge into biocrude oil. A parametric study was performed to investigate the effect of the slurry flow rate, temperature, and the external heat transfer coefficient on the biocrude oil production performance. The simulation data will be used in the future to design and scale up a large-scale HTL reactor.

Keywords