The Journal of Headache and Pain (Sep 2020)

Impaired effective functional connectivity of the sensorimotor network in interictal episodic migraineurs without aura

  • Heng-Le Wei,
  • Jing Chen,
  • Yu-Chen Chen,
  • Yu-Sheng Yu,
  • Xi Guo,
  • Gang-Ping Zhou,
  • Qing-Qing Zhou,
  • Zhen-Zhen He,
  • Lian Yang,
  • Xindao Yin,
  • Junrong Li,
  • Hong Zhang

DOI
https://doi.org/10.1186/s10194-020-01176-5
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Resting-state functional magnetic resonance imaging (Rs-fMRI) has confirmed sensorimotor network (SMN) dysfunction in migraine without aura (MwoA). However, the underlying mechanisms of SMN effective functional connectivity in MwoA remain unclear. We aimed to explore the association between clinical characteristics and effective functional connectivity in SMN, in interictal patients who have MwoA. Methods We used Rs-fMRI to acquire imaging data in 40 episodic patients with MwoA in the interictal phase and 34 healthy controls (HCs). Independent component analysis was used to profile the distribution of SMN and calculate the different SMN activity between the two groups. Subsequently, Granger causality analysis was used to analyze the effective functional connectivity between the SMN and other brain regions. Results Compared to the HCs, MwoA patients showed higher activity in the bilateral postcentral gyri (PoCG), but lower activity in the left midcingulate cortex (MCC). Moreover, MwoA patients showed decreased effective functional connectivity from the SMN to left middle temporal gyrus, right putamen, left insula and bilateral precuneus, but increased effective functional connectivity to the right paracentral lobule. There was also significant effective functional connectivity from the primary visual cortex, right cuneus and right putamen to the SMN. In the interictal period, there was positive correlation between the activity of the right PoCG and the frequency of headache. The disease duration was positively correlated with abnormal effective functional connectivity from the left PoCG to right precuneus. In addition, the headache impact scores were negatively correlated with abnormal effective functional connectivity from the left MCC to right paracentral lobule, as well as from the right precuneus to left PoCG. Conclusions These differential, resting-state functional activities of the SMN in episodic MwoA may contribute to the understanding of migraine-related intra- and internetwork imbalances associated with nociceptive regulation and chronification.

Keywords