EBioMedicine (Oct 2022)
Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study
- Parminder S. Reel,
- Smarti Reel,
- Josie C. van Kralingen,
- Katharina Langton,
- Katharina Lang,
- Zoran Erlic,
- Casper K. Larsen,
- Laurence Amar,
- Christina Pamporaki,
- Paolo Mulatero,
- Anne Blanchard,
- Marek Kabat,
- Stacy Robertson,
- Scott M. MacKenzie,
- Angela E. Taylor,
- Mirko Peitzsch,
- Filippo Ceccato,
- Carla Scaroni,
- Martin Reincke,
- Matthias Kroiss,
- Michael C. Dennedy,
- Alessio Pecori,
- Silvia Monticone,
- Jaap Deinum,
- Gian Paolo Rossi,
- Livia Lenzini,
- John D. McClure,
- Thomas Nind,
- Alexandra Riddell,
- Anthony Stell,
- Christian Cole,
- Isabella Sudano,
- Cornelia Prehn,
- Jerzy Adamski,
- Anne-Paule Gimenez-Roqueplo,
- Guillaume Assié,
- Wiebke Arlt,
- Felix Beuschlein,
- Graeme Eisenhofer,
- Eleanor Davies,
- Maria-Christina Zennaro,
- Emily Jefferson
Affiliations
- Parminder S. Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK; Corresponding authors at: Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK.
- Smarti Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK
- Josie C. van Kralingen
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
- Katharina Langton
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Katharina Lang
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK; Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Zoran Erlic
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
- Casper K. Larsen
- Université Paris Cité, PARCC, INSERM, F-75006 Paris, France
- Laurence Amar
- Université Paris Cité, PARCC, INSERM, F-75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension artérielle, Paris, France
- Christina Pamporaki
- Department of Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
- Anne Blanchard
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d'Investigations Cliniques 9201 Paris, France
- Marek Kabat
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
- Stacy Robertson
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
- Scott M. MacKenzie
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
- Angela E. Taylor
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Filippo Ceccato
- UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
- Carla Scaroni
- UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
- Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Matthias Kroiss
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany; Clinical Chemistry and Laboratory Medicine, Core Unit Clinical Mass Spectrometry, Universitätsklinikum Würzburg, Germany; Schwerpunkt Endokrinologie/Diabetologie, Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Germany; Comprehensive Cancer Center Mainfranken, Universität Würzburg, Würzburg, Germany
- Michael C. Dennedy
- The Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland 33 Galway, Ireland
- Alessio Pecori
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
- Silvia Monticone
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
- Jaap Deinum
- Department of Medicine, Section of Vascular Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Gian Paolo Rossi
- Internal & Emergency Medicine- ESH Specialized Hypertension Center, Department of Medicine-DIMED, University of Padua, Padua, Italy
- Livia Lenzini
- Internal & Emergency Medicine- ESH Specialized Hypertension Center, Department of Medicine-DIMED, University of Padua, Padua, Italy
- John D. McClure
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
- Thomas Nind
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK
- Alexandra Riddell
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
- Anthony Stell
- Department of Computing and Information Systems, University of Melbourne, Melbourne, Australia
- Christian Cole
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK
- Isabella Sudano
- University Hospital Zurich University Heart Center, Cardiology, and University of Zurich, Zurich, Switzerland
- Cornelia Prehn
- Metabolomics and Proteomics Core (MPC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, PARCC, INSERM, F-75006 Paris, France; Service de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Guillaume Assié
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France
- Wiebke Arlt
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK; Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland; Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Department of Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Eleanor Davies
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
- Maria-Christina Zennaro
- Université Paris Cité, PARCC, INSERM, F-75006 Paris, France; Service de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France; Corresponding authors at: Université Paris Cité, PARCC, INSERM, F-75006 Paris, France and Service de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France.
- Emily Jefferson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK; Institute of Health & Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; Corresponding authors at: Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK and Institute of Health & Wellbeing, University of Glasgow, Glasgow G12 8RZ.
- Journal volume & issue
-
Vol. 84
p. 104276
Abstract
Summary: Background: Arterial hypertension is a major cardiovascular risk factor. Identification of secondary hypertension in its various forms is key to preventing and targeting treatment of cardiovascular complications. Simplified diagnostic tests are urgently required to distinguish primary and secondary hypertension to address the current underdiagnosis of the latter. Methods: This study uses Machine Learning (ML) to classify subtypes of endocrine hypertension (EHT) in a large cohort of hypertensive patients using multidimensional omics analysis of plasma and urine samples. We measured 409 multi-omics (MOmics) features including plasma miRNAs (PmiRNA: 173), plasma catechol O-methylated metabolites (PMetas: 4), plasma steroids (PSteroids: 16), urinary steroid metabolites (USteroids: 27), and plasma small metabolites (PSmallMB: 189) in primary hypertension (PHT) patients, EHT patients with either primary aldosteronism (PA), pheochromocytoma/functional paraganglioma (PPGL) or Cushing syndrome (CS) and normotensive volunteers (NV). Biomarker discovery involved selection of disease combination, outlier handling, feature reduction, 8 ML classifiers, class balancing and consideration of different age- and sex-based scenarios. Classifications were evaluated using balanced accuracy, sensitivity, specificity, AUC, F1, and Kappa score. Findings: Complete clinical and biological datasets were generated from 307 subjects (PA=113, PPGL=88, CS=41 and PHT=112). The random forest classifier provided ∼92% balanced accuracy (∼11% improvement on the best mono-omics classifier), with 96% specificity and 0.95 AUC to distinguish one of the four conditions in multi-class ALL-ALL comparisons (PPGL vs PA vs CS vs PHT) on an unseen test set, using 57 MOmics features. For discrimination of EHT (PA + PPGL + CS) vs PHT, the simple logistic classifier achieved 0.96 AUC with 90% sensitivity, and ∼86% specificity, using 37 MOmics features. One PmiRNA (hsa-miR-15a-5p) and two PSmallMB (C9 and PC ae C38:1) features were found to be most discriminating for all disease combinations. Overall, the MOmics-based classifiers were able to provide better classification performance in comparison to mono-omics classifiers. Interpretation: We have developed a ML pipeline to distinguish different EHT subtypes from PHT using multi-omics data. This innovative approach to stratification is an advancement towards the development of a diagnostic tool for EHT patients, significantly increasing testing throughput and accelerating administration of appropriate treatment. Funding: European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 633983, Clinical Research Priority Program of the University of Zurich for the CRPP HYRENE (to Z.E. and F.B.), and Deutsche Forschungsgemeinschaft (CRC/Transregio 205/1).