MATEC Web of Conferences (Jan 2020)
Mixed Convection in Lid-Driven “T” Shallow Cavity Heated From Bottom and Filled by Two Immiscible Fluids of Air and Al2O3-Water Nanofluid
Abstract
This work present numerical simulation results of mixed convection in lid-driven “T” shallow cavity, filled by two immiscible fluids layers of air and Al2O3-water nanofluid. Mixed convection condition is created by the upper wall movement and temperature difference between the alveolus bottom and upper wall. Hydrodynamic and thermal characteristics of the flow have been predicted by solving the Navier- Stokes and energy equation using finite volume method. Coupling between two fluids layers are achieved using continuity of temperature and velocity at the interface air-nanofluid. Nano-particle volume fraction effect and geometrical shape of alveolus sidewalls (plane shape, concave shape and convex shape) have been chosen as discussed parameters. Analysis of obtained results shows that the heat transfer rate decreased with increasing volume fraction of solid inside the nanofluid layer. In addition, geometrical shape of alveolus sidewalls has a poor effect on flow structure and isotherms distribution in the physical domain.