This paper discusses the control of the linear switched reluctance machines (LSRMs) network for the zero phase-difference tracking to a sinusoidal reference. The dynamics of each LSRM is derived by online system identification and modeled as a second-order linear system. Accordingly, based on the coupled harmonic oscillators synchronization manner, a distributed control strategy is proposed to synchronize each LSRM state to a virtual LSRM node representing the external sinusoidal reference for tracking it with zero phase-difference. Subsequently, a simulation scenario and an experimental platform with the identical parameter setup are designed to investigate the tracking performance of the LSRMs network constructed by the proposed distributed control strategy. Finally, the simulation and experimental results verify the effectiveness of the proposed LSRMs network controller, and also prove that the coupled harmonic oscillators synchronization method can improve the synchronization tracking performance and precision.