Diagnostics (Oct 2021)

Development of an Enzyme-Linked Immunosorbent Assay (ELISA) for Accurate and Prompt Coronavirus Disease 2019 (COVID-19) Diagnosis Using the Rational Selection of Serological Biomarkers

  • Theano Lagousi,
  • John Routsias,
  • Vana Spoulou

DOI
https://doi.org/10.3390/diagnostics11111970
Journal volume & issue
Vol. 11, no. 11
p. 1970

Abstract

Read online

Prompt COVID-19 diagnosis is urgently required to support infection control measures. Currently available serological tests for measuring SARS-CoV-2 antibodies use different target antigens, although their sensitivity and specificity presents a challenge. We aimed to develop an “in-house” serological ELISA to measure antibodies against SARS-CoV-2 by combining different protein antigens. Sera (n = 44) from COVID-19-confirmed patients were evaluated against different SARS-CoV-2 protein antigens and all potential combinations using ELISA. Patients’ sera were also evaluated against commercially available ELISA diagnostic kits. The mixture containing RBD 2.5 μg/mL, S2 1 μg/mL and N 1.5 μg/mL was found to be the most potent. Plates were incubated with patients’ sera (1:100), and goat anti-human alkaline phosphatase-conjugated IgG, ΙgM and IgA antibody was added. The cut-off value for each assay was determined using the mean optical density plus two standard deviations of pre-pandemic controls. The “in-house” ELISA displayed 91% sensitivity and 97% specificity for IgG antibodies, whereas its sensitivity and specificity for IgM and IgA were 75% and 95% and 73% and 91%, respectively. The “in-house” ELISA developed here combined three SARS-CoV-2 antigens (RBD, S2 and N) as capture antigens and displayed comparable and even higher sensitivity and specificity than otherwise quite reliable commercially available ELISA diagnostic kits.

Keywords