Sensors (May 2025)
Rapid Detection of Deployment Errors for Segmented Space Telescopes Based on Long-Range, High-Precision Edge Sensors
Abstract
The structural deformations induced by rocket launch vibrations, on-orbit thermal gradients, and gravitation fluctuations can lead to significant deployment errors for large-aperture, segmented space telescopes. As the size and number of segments increase in future telescopes, the optical-based methods for detecting deployment errors suffer from the range limitations of the millimeter scale and time-consuming processes of the month scale. To address this, we propose a new method for rapid-deployment error detection based on long-range, high-precision capacitive edge sensors. These sensors feature a measurement range of ±13 mm, with a precision better than 7.3 nm, enabling efficient and simultaneous error detection across all segments. This approach significantly reduces the time and steps required compared to traditional optical methods. Through experimental validation, the designed system demonstrated the ability to detect and correct large deployment errors and maintain co-phasing precision, meeting the stringent requirements for future space telescopes. The proposed sensor system enhances deployment efficiency, offering a viable solution for the next generation of segmented space telescopes.
Keywords