ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Jun 2021)

ADVANCED SURFACE-REFLECTED RADIANCE CORRECTION FOR AIRBORNE HYPERSPECTRAL IMAGERY IN COASTAL RED TIDE DETECTION

  • J.-E. Min,
  • J.-E. Min,
  • S.-K. Lee,
  • J.-H. Ryu

DOI
https://doi.org/10.5194/isprs-annals-V-3-2021-73-2021
Journal volume & issue
Vol. V-3-2021
pp. 73 – 80

Abstract

Read online

Red tides are among the most common coastal hazards, causing serious damage to the coastal environment. Many satellite sensors can detect red tide blooms, but are limited in their detection of the exact area of the bloom and biological abundance in terms of spatial and spectral resolution. The high spatial and spectral resolutions of hyperspectral airborne remote sensing data may help overcome these limitations to analyze red tide blooms more effectively. To identify potential applications of hyperspectral airborne data in red tide detection, an integrated field campaign was performed in September 2016 off the coast of Tongyeong, South Korea. An AisaEAGLE sensor was installed on a Cessna 208B crewed aircraft to obtain hyperspectral images of an 18 km × 18 km coastal area. To assess the atmospheric correction of the hyperspectral data, in situ optical data and water samples were measured on two vessels concurrent with the flight path. Advanced surface-reflected radiance (Lr) correction and basic atmospheric path radiance (La) correction were performed on the hyperspectral images. Of these, Lr correction comprised a large proportion of the atmospheric correction. The atmosphere-corrected remote sensing reflectance data of the hyperspectral images closely matched the in-situ measurements. The data were assessed for red tide events using ratio analysis and the fluorescence line height technique; the ratio analysis more effectively detected regions with suspected red tides.