Molecular Plant-Microbe Interactions (Jun 2017)

Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight

  • Jun Wang,
  • Dongsheng Tian,
  • Keyu Gu,
  • Xiaobei Yang,
  • Lanlan Wang,
  • Xuan Zeng,
  • Zhongchao Yin

DOI
https://doi.org/10.1094/MPMI-11-16-0229-R
Journal volume & issue
Vol. 30, no. 6
pp. 466 – 477

Abstract

Read online

Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. ‘Nipponbare’ rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from ‘CBB23’ rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane, show self-interaction, and induce ER Ca2+ depletion in leaf cells of N. benthamiana. The results indicate that Xa10-Ni and Xa23-Ni in Nipponbare encode functional executor R proteins, which induce cell death in both monocotyledonous and dicotyledonous plants and have the potential of being engineered to provide broad-spectrum disease resistance to plant-pathogenic Xanthomonas spp.