Dyna (Dec 2022)

Modelación empírica de la conductividad térmica para un grupo de aceros

  • Gabriel Roque-Villalonga,
  • Yanán Camaraza-Medina

DOI
https://doi.org/10.15446/dyna.v89n224.103879
Journal volume & issue
Vol. 89, no. 224

Abstract

Read online

La relación entre la composición química y la temperatura de trabajo del acero no son lineales con la conductividad térmica por lo que se proponen modelos empíricos para la predicción de esta. Se realizaron mediciones a32 marcaciones de acero AISI laminados y recocidos. Se utilizó el algoritmo de machine learning K- Nearest Neighbor, además se entrenó una red neuronal empleando el software RStudio, específicamente la librería caret, para obtener un modelo empírico que permitió predecir con un adecuado nivel de incertidumbre la conductividad térmica en el rango de temperaturas de 0−800℃. El modelo se probó con un grupo de valores reservados para este fin, obteniendo bajos niveles de incertidumbre. Los mejores resultados se obtienen al entrenar una red neuronal con 25 neuronas en la capa oculta y un valor de regularización de 0,001, obteniendo un error de 5,4%y un RMSE de 0,0228.

Keywords