Metals (Jan 2021)

Numerical Analysis of Serrated Chip Formation Mechanism with Johnson-Cook Parameters in Micro-Cutting of Ti6Al4V

  • Zhongpeng Zheng,
  • Chenbing Ni,
  • Yun Yang,
  • Yuchao Bai,
  • Xin Jin

DOI
https://doi.org/10.3390/met11010102
Journal volume & issue
Vol. 11, no. 1
p. 102

Abstract

Read online

Previous studies have reported significant differences in the Johnson-Cook (J-C) parameters of Ti6Al4V alloy. Thus, various serrated chip morphologies, cutting forces, and cutting temperatures are obtained when different constitutive parameters are used for numerical and simulation analyses, which decreases the reliability of the simulation model. Therefore, it is necessary to investigate and analyze simulation errors due to differences in the J-C parameters. In this study, the mechanism of the serrated chip formation of Ti6Al4V is thoroughly analyzed using the uniformly proportional J-C parameters. The serrated chip sensitivity, shear band spacing, serrated segmentation frequency, chip serration intensity, temperature field, strain energy, and cutting force is obtained. This study aims to improve the accuracy and reliability of the micro-cutting simulation models, as well as a reference for the selection of J-C constitutive parameters of simulation with Ti6Al4V manufactured with different heat treatments and additive manufacturing.

Keywords