Transactions on Environment and Electrical Engineering (Mar 2017)
Calculation of the influence of slot geometry on the magnetic flux density of the air gap
Abstract
The objective of this work is to investigate the influence of slotted air gap constructive parameters on magnetic flux density of rotating machines. For this purpose, different approaches were used to solve the air gap field diagram using finite element method and the magnetic field distribution uniformity was evaluated by Carter's factor calculation on two-dimensional and three-dimensional models. Sensitivity analysis of slot constructive parameters was performed and results show that slot geometry modifies the magnetic flux on air gap and shifts the air gap magnetic equipotential midline of double slotted machines. Finally, minimization of Carter’s factor on two-dimensional model presents an optimized slot geometry with a near uniform magnetic flux density distribution.
Keywords