Frontiers in Plant Science (Jun 2021)

Transcriptome Analysis of Chloris virgata, Which Shows the Fastest Germination and Growth in the Major Mongolian Grassland Plant

  • Byambajav Bolortuya,
  • Byambajav Bolortuya,
  • Byambajav Bolortuya,
  • Shintaro Kawabata,
  • Ayumi Yamagami,
  • Bekh-Ochir Davaapurev,
  • Fuminori Takahashi,
  • Komaki Inoue,
  • Asaka Kanatani,
  • Keiichi Mochida,
  • Minoru Kumazawa,
  • Kentaro Ifuku,
  • Sodnomdarjaa Jigjidsuren,
  • Tugsjargal Battogtokh,
  • Gombosuren Udval,
  • Kazuo Shinozaki,
  • Tadao Asami,
  • Javzan Batkhuu,
  • Takeshi Nakano,
  • Takeshi Nakano,
  • Takeshi Nakano

DOI
https://doi.org/10.3389/fpls.2021.684987
Journal volume & issue
Vol. 12

Abstract

Read online

Plants in Mongolian grasslands are exposed to short, dry summers and long, cold winters. These plants should be prepared for fast germination and growth activity in response to the limited summer rainfall. The wild plant species adapted to the Mongolian grassland environment may allow us to explore useful genes, as a source of unique genetic codes for crop improvement. Here, we identified the Chloris virgata Dornogovi accession as the fastest germinating plant in major Mongolian grassland plants. It germinated just 5 h after treatment for germination initiation and showed rapid growth, especially in its early and young development stages. This indicates its high growth potential compared to grass crops such as rice and wheat. By assessing growth recovery after animal bite treatment (mimicked by cutting the leaves with scissors), we found that C. virgata could rapidly regenerate leaves after being damaged, suggesting high regeneration potential against grazing. To analyze the regulatory mechanism involved in the high growth potential of C. virgata, we performed RNA-seq-based transcriptome analysis and illustrated a comprehensive gene expression map of the species. Through de novo transcriptome assembly with the RNA-seq reads from whole organ samples of C. virgata at the germination stage (2 days after germination, DAG), early young development stage (8 DAG), young development stage (17 DAG), and adult development stage (28 DAG), we identified 21,589 unified transcripts (contigs) and found that 19,346 and 18,156 protein-coding transcripts were homologous to those in rice and Arabidopsis, respectively. The best-aligned sequences were annotated with gene ontology groups. When comparing the transcriptomes across developmental stages, we found an over-representation of genes involved in growth regulation in the early development stage in C. virgata. Plant development is tightly regulated by phytohormones such as brassinosteroids, gibberellic acid, abscisic acid, and strigolactones. Moreover, our transcriptome map demonstrated the expression profiles of orthologs involved in the biosynthesis of these phytohormones and their signaling networks. We discuss the possibility that C. virgata phytohormone signaling and biosynthesis genes regulate early germination and growth advantages. Comprehensive transcriptome information will provide a useful resource for gene discovery and facilitate a deeper understanding of the diversity of the regulatory systems that have evolved in C. virgata while adapting to severe environmental conditions.

Keywords