Plants (Feb 2025)
Use of Uncrewed Aerial System (UAS)-Based Crop Features to Perform Growth Analysis of Energy Cane Genotypes
Abstract
Plant growth analysis provides insight regarding the variation behind yield differences in tested genotypes for plant breeders, but adopting this application solely for traditional plant phenotyping remains challenging. Here, we propose a procedure of using uncrewed aerial systems (UAS) to obtain successive phenotype data for growth analysis. The objectives of this study were to obtain high-temporal UAS-based phenotype data for growth analysis and investigate the correlation between the UAS-based phenotype and biomass yield. Seven different energy cane genotypes were grown in a random complete block design with four replications. Twenty-six UAS flight missions were flown throughout the growing season, and canopy cover (CC) and canopy height (CH) measurements were extracted. A five-parameter logistic (5PL) function was fitted through these temporal measurements of CC and CH. The first- and second-order derivatives of this function were calculated to obtain several growth parameters, which were then used to assess the growth of different genotypes with respect to weed competitiveness and biomass yield traits. The results show that CC and CH growth rates significantly differed among genotypes. TH16-16 was outstanding for its ground cover growth; therefore, it was identified as a weed-competitive genotype. Furthermore, TH16-22 had a higher CH maximum growth rate per day, yielding a higher biomass compared to other genotypes. The CH-based multi-temporal data as well as the growth parameters had a better relationship with biomass yield. This study highlights the application of UAS-based high-throughput phenotyping (HTP), along with growth analysis, for assisting plant breeders in decision-making.
Keywords