PLoS ONE (Jan 2018)

Analysis of aluminum toxicity in Hordeum vulgare roots with an emphasis on DNA integrity and cell cycle.

  • Joanna Jaskowiak,
  • Oliver Tkaczyk,
  • Michal Slota,
  • Jolanta Kwasniewska,
  • Iwona Szarejko

DOI
https://doi.org/10.1371/journal.pone.0193156
Journal volume & issue
Vol. 13, no. 2
p. e0193156

Abstract

Read online

Barley is one of the cereals that are most sensitive to aluminum (Al). Al in acid soils limits barley growth and development and, as a result, its productivity. The inhibition of root growth is a widely accepted indicator of Al stress. Al toxicity is affected by many factors including the culture medium, pH, Al concentration and the duration of the treatment. However, Al can act differently in different species and still Al toxicity in barley deserves study. Since the mechanism of Al toxicity is discussed we cytogenetically describe the effects of different doses of bioavailable Al on the barley nuclear genome-mitotic activity, cell cycle profile and DNA integrity. At the same time, we tested an established deep-water culture (DWC) hydroponics system and analyzed the effects of Al on the root system parameters using WinRHIZO software. We demonstrated the cytotoxic and genotoxic effect of Al in barley root cells. We showed that Al treatment significantly reduced the mitotic activity of the root tip cells and it also induced micronuclei and damaged nuclei. The DNA-damaging effect of Al was observed using the TUNEL test. We define the inhibitory influence of Al on DNA replication in barley. Analysis with the labelling and detection of 5-ethynyl-2'-deoxyuridin (EdU) showed that the treatment with Al significantly decreased the frequency of S phase cells. We also demonstrated that Al exposure led to changes in the cell cycle profile of barley root tips. The delay of cell divisions observed as increased frequency of cells in G2/M phase after Al treatment was reported using flow cytometry.