Applied Sciences (Dec 2023)
Discrimination Accuracy of Sequential Versus Simultaneous Vibrotactile Stimulation on the Forearm
Abstract
We examined discrimination accuracy of vibrotactile patterns on the upper forearm using a 2 × 3 array of voice coil actuators to generate 100 Hz vibrotactile stimulation. We evaluated participants’ ability to recognize distinct vibrotactile patterns presented both simultaneously (1000 ms) and sequentially (500 ms with a 450 ms interval). Recognition accuracy was significantly higher for sequential (93.24%) than for simultaneous presentation (26.15%). Patterns using 2–3 actuators were recognized more accurately than those using 4–5 actuators. During sequential presentation, there were primacy and recency effects; accuracy was higher for the initial and final stimulations in a sequence. Over time, participants also demonstrated a learning effect, becoming more adept at recognizing and interpreting vibrotactile patterns. This underscores the potential for skill development and emphasizes the value of training for wearable vibrotactile devices. We discuss the implications of these findings for the design of tactile communication devices and wearable technology.
Keywords