Remote Sensing (Nov 2021)

Projected Meteorological Drought over Asian Drylands under Different CMIP6 Scenarios

  • Hongwei Li,
  • Zhi Li,
  • Yaning Chen,
  • Yongchang Liu,
  • Yanan Hu,
  • Fan Sun,
  • Patient Mindje Kayumba

DOI
https://doi.org/10.3390/rs13214409
Journal volume & issue
Vol. 13, no. 21
p. 4409

Abstract

Read online

Asia currently has the world’s largest arid and semi-arid zones, so a timely assessment of future droughts in the Asian drylands is prudent, particularly in the context of recent frequent sandstorms. This paper assesses the duration, frequency, and intensity of drought events in the Asian drylands based on nine climate models of the Coupled Model Intercomparison Project Phase 6 (CMIP6). The results show that a high percentage of land area is experiencing significant drought intensification of 65.1%, 89.9%, and 99.8% under Shared Socioeconomic Pathways (SSP)126, SSP245, and SSP585 scenarios, respectively. Furthermore, the data indicate that future droughts will become less frequent but longer in duration and more intense, with even more severe future droughts predicted for northwest China and western parts of Uzbekistan and Kazakhstan. Drought durations of 10.8 months and 13.4 months are anticipated for the future periods of 2021–2060 and 2061–2100, respectively, compared to the duration of 6.6 months for the historical period (1960–2000). Meanwhile, drought intensity is expected to reach 1.37 and 1.66, respectively, for future events compared to 0.97 for the historical period. However, drought severity under SSP245 will be weaker than that under SSP126 due to the mitigating effect of precipitation. The results of this study can provide a basis for the development of adaptation measures in Asian dryland nations.

Keywords