PLoS ONE (Jan 2017)

Detection of crossed cerebellar diaschisis in hyperacute ischemic stroke using arterial spin-labeled MR imaging.

  • Koung Mi Kang,
  • Chul-Ho Sohn,
  • Seung Hong Choi,
  • Keun-Hwa Jung,
  • Roh-Eul Yoo,
  • Tae Jin Yun,
  • Ji-Hoon Kim,
  • Sun-Won Park

DOI
https://doi.org/10.1371/journal.pone.0173971
Journal volume & issue
Vol. 12, no. 3
p. e0173971

Abstract

Read online

BACKGROUND AND PURPOSE:Arterial spin-labeling (ASL) was recently introduced as a noninvasive method to evaluate cerebral hemodynamics. The purposes of this study were to assess the ability of ASL imaging to detect crossed cerebellar diaschisis (CCD) in patients with their first unilateral supratentorial hyperacute stroke and to identify imaging or clinical factors significantly associated with CCD. MATERIALS AND METHODS:We reviewed 204 consecutive patients who underwent MRI less than 8 hours after the onset of stroke symptoms. The inclusion criteria were supratentorial abnormality in diffusion-weighted images in the absence of a cerebellar or brain stem lesion, bilateral supratentorial infarction, subacute or chronic infarction, and MR angiography showing vertebrobasilar system disease. For qualitative analysis, asymmetric cerebellar hypoperfusion in ASL images was categorized into 3 grades. Quantitative analysis was performed to calculate the asymmetric index (AI). The patients' demographic and clinical features and outcomes were recorded. Univariate and multivariate analyses were also performed. RESULTS:A total of 32 patients met the inclusion criteria, and 24 (75%) presented CCD. Univariate analyses revealed more frequent arterial occlusions, higher diffusion-weighted imaging (DWI) lesion volumes and higher initial NIHSS and mRS scores in the CCD-positive group compared with the CCD-negative group (all p < .05). The presence of arterial occlusion and the initial mRS scores were related with the AI (all p < .05). Multivariate analyses revealed that arterial occlusion and the initial mRS scores were significantly associated with CCD and AI. CONCLUSION:ASL imaging could detect CCD in 75% of patients with hyperacute infarction. We found that CCD was more prevalent in patients with arterial occlusion, larger ischemic brain volumes, and higher initial NIHSS and mRS scores. In particular, vessel occlusion and initial mRS score appeared to be significantly related with CCD pathophysiology in the hyperacute stage.