Response of Nitrification and Crop Yield to the Presence of NBPT and DCD in a Wheat-Corn Double Cropping System
Zhaoqi Qu,
Xuejing Xia,
Dan Liu,
Huimin Dong,
Tingliang Pan,
Haojie Feng,
Yanhong Lou,
Hui Wang,
Quangang Yang,
Zhongchen Yang,
Hong Pan,
Yuping Zhuge
Affiliations
Zhaoqi Qu
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Xuejing Xia
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Dan Liu
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Huimin Dong
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Tingliang Pan
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Haojie Feng
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Yanhong Lou
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Hui Wang
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Quangang Yang
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Zhongchen Yang
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Hong Pan
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
Yuping Zhuge
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
The excessive application of nitrogen fertilizer aggravated the loss of nitrogen in farmland and exerted detrimental effects on the soil and water environment. Examining the effects of N-(n-Butyl)thiophosphoric triamide (NBPT) and nitrification inhibitor dicyandiamide (DCD) on nitrification and crop yield in wheat-corn double cropping systems would provide valuable insights for improving nitrogen efficiency and ensuring a rational application of inhibitors. A field experiment lasting one and a half years was performed in the winter wheat–summer maize double agroecosystem in North China. The four treatments that were applied included (I) conventional fertilization without inhibitors (CK), (II) conventional fertilization with 0.26 g/m2 NBPT (NBPT), (III) conventional fertilization with 1.00 g/m2 DCD (DCD), and (IV) conventional fertilization with 0.26 g/m2 NBPT and 1.00 g/m2 DCD (NBPT + DCD). The results demonstrated that the combined use of NBPT and DCD exerted better effects in reducing NO3−-N leaching. Nitrification could be inhibited for up to 95 days by combining NBPT and DCD, while 21 days by DCD. Ammonia-oxidizing archaea (AOA) (R2 = 0.07159, p 2 = 0.09359, p 3−-N content, which indicated that the ammoxidation process was mainly regulated by AOA and AOB, instead of comammox in the winter wheat–summer maize double agroecosystem in North China.