Inorganics (May 2018)

Field-Induced Dysprosium Single-Molecule Magnet Involving a Fused o-Semiquinone-Extended-Tetrathiafulvalene-o-Semiquinone Bridging Triad

  • Jessica Flores Gonzalez,
  • Olivier Cador,
  • Lahcène Ouahab,
  • Sergey Norkov,
  • Viacheslav Kuropatov,
  • Fabrice Pointillart

DOI
https://doi.org/10.3390/inorganics6020045
Journal volume & issue
Vol. 6, no. 2
p. 45

Abstract

Read online

The reaction between the 2,2′-benzene-1,4-diylbis(6-hydroxy-4,7-di-tert-butyl-1,3-benzodithiol-2-ylium-5-olate biradical triad (L) and the metallo-precursor [Dy(hfac)3]·2H2O leads to the formation of a one-dimensional coordination polymer with the formula {[Dy(hfac)3(L)]·2C6H14}n (1). The X-ray structure reveals that the polymeric structure is formed by the bridging of the Dy(hfac)3 units with the multi-redox triad L. Single-crystal X-ray diffraction and UltraViolet-visible absorption spectroscopy confirm that the triad L in 1 is bound as a direduced, diprotonated form of o-quinone-extended tetrathiafulvalene-o-quinone (Q-exTTF-Q). Alternate Current (AC) measurements highlight a field-induced single-molecule magnet (SMM) behavior with an energy barrier of 20 K, and thus 1 can be described as a one-dimensional assembly of mononuclear SMMs bridged by the L triad.

Keywords