Tropical Medicine and Health (Apr 2019)

Genetic structure of Anopheles gambiae s.s populations following the use of insecticides on several consecutive years in southern Benin

  • Arsène Jacques Y. H. Fassinou,
  • Come Z. Koukpo,
  • Razaki A. Ossè,
  • Fiacre R. Agossa,
  • Benoit S. Assogba,
  • Aboubakar Sidick,
  • Wilfrid T. Sèwadé,
  • Martin C. Akogbéto,
  • Michel Sèzonlin

DOI
https://doi.org/10.1186/s41182-019-0151-z
Journal volume & issue
Vol. 47, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Several studies have reported the strong resistance of Anopheles gambiae s.l. complex species to pyrethroids. The voltage-dependent sodium channel (Vgsc) gene is the main target of pyrethroids and DDT. In Benin, the frequency of the resistant allele (L1014F) of this gene varies along the north-south transect. Monitoring the evolution of resistance is necessary to better appreciate the genetic structure of vector populations in localities subject to the intensive use of chemicals associated with other control initiatives. The purpose of this study was to map the distribution of pyrethroid insecticide resistance alleles of the Kdr gene in malaria vectors in different regions and ecological facies in order to identify the evolutionary forces that might be the basis of anopheline population dynamics. Methods The characterization of Anopheles gambiae s.l. populations and resistance mechanisms were performed using adult mosquitoes obtained from larvae collected in the four agroecological zones in southern Benin. Genomic DNA extraction was performed on whole mosquitoes. The extracted genomic DNA from them were used for the molecular identification of species in Anopheles gambiae s.l. complex and the identification of genotypes related to pyrethroid resistance as the Kdr gene amino acid position 1014 in sodium channel. Molecular speciation and genotyping of Kdr resistant alleles (1014) were done using PCR. Genepop software version 4.2 was used to calculate allelic and genotypic frequencies in each agroecological zone. The p value of the allelic frequency was determined using the binomial test function in R version 3.3.3. The Hardy-Weinberg equilibrium was checked for each population with Genetics software version 1.3.8.1. The observed heterozygosity and the expected heterozygosity as well as the fixation index and genetic differentiation index within and between populations were calculated using Genepop software version 4.2. Results During the study period, Anopheles coluzzii was the major species in all agroecological zones while Anopheles gambiae was scarcely represented. Regardless of the species, resistant homozygote individuals (L1014F/L1014F) were dominant in all agroecological zones, showing a strong selection of the resistant allele (L1014F). All populations showed a deficit of heterozygosity. No genetic differentiation was observed between the different populations of the two species. For Anopheles coluzzii, there was a small differentiation among the populations of the central cotton and bar-lands zones. The genetic differentiation was modest among the population of the fisheries zone (Fst = 0.1295). The genetic differentiation was very high in the population of Anopheles gambiae of the bar-lands zone (Fst = 0.2408). Conclusion This study revealed that the use of insecticides in Benin for years has altered the genetic structure of Anopheles gambiae s.s. populations in all agroecological zones of southern Benin. It would be desirable to orientate vector control efforts towards the use of insecticides other than pyrethroids and DDT or combinations of insecticides with different modes of action.

Keywords