Materials Today Bio (Apr 2023)

Engineered human liver based on pullulan-dextran hydrogel promotes mice survival after liver failure

  • Camille Le Guilcher,
  • Grégory Merlen,
  • Alessandra Dellaquila,
  • Marie-Noëlle Labour,
  • Rachida Aid,
  • Thierry Tordjmann,
  • Didier Letourneur,
  • Teresa Simon-Yarza

Journal volume & issue
Vol. 19
p. 100554

Abstract

Read online

Liver tissue engineering approaches aim to support drug testing, assistance devices, or transplantation. However, their suitability for clinical application remains unsatisfactory. Herein, we demonstrate the beneficial and biocompatible use of porous pullulan-dextran hydrogel for the self-assembly of hepatocytes and biliary-like cells into functional 3D microtissues. Using HepaRG cells, we obtained 21 days maintenance of engineered liver polarity, functional detoxification and excretion systems, as well as glycogen storage in hydrogel. Implantation on two liver lobes in mice of hydrogels containing 3800 HepaRG 3D structures of 100 ​μm in diameter, indicated successful engraftment and no signs of liver toxicity after one month. Finally, after acetaminophen-induced liver failure, when mice were transplanted with engineered livers on left lobe and peritoneal cavity, the survival rate at 7 days significantly increased by 31.8% compared with mice without cell therapy. These findings support the clinical potential of pullulan-dextran hydrogel for liver failure management.

Keywords