Axioms (Sep 2023)
A Novel Approach for Individual Design Perception Based on Fuzzy Inference System Training with YUKI Algorithm
Abstract
This paper presents a novel approach for individual design perception modeling using the YUKI algorithm-trained Fuzzy Inference System. The study focuses on understanding how individuals perceive design based on personality traits, particularly openness to experience, using the YUKI algorithm and Fuzzy C-means clustering algorithm. The approach generates several Sugeno-type Fuzzy Inference System models to predict design perception, to minimize the Root Mean Squared Error between the model prediction and the actual design perception of participants. The results demonstrate that the suggested method offers more accurate predictions compared to the traditional Fuzzy C-means Fuzzy Inference System and Deep Artificial Neural Networks, and the Root Mean Square deviation for individual design perceptions falls within a satisfactory range of 0.84 to 1.32. The YUKI algorithm-trained Fuzzy Inference System proves effective in clustering individuals based on their level of openness, providing insights into how personality traits influence design perception.
Keywords