In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

KRT17 Functions as a Tumor Promoter and Regulates Proliferation, Migration and Invasion in Pancreatic Cancer via mTOR/S6k1 Pathway

Cancer Management and Research. 2020;Volume 12:2087-2095

 

Journal Homepage

Journal Title: Cancer Management and Research

ISSN: 1179-1322 (Online)

Publisher: Dove Medical Press

LCC Subject Category: Medicine: Internal medicine: Neoplasms. Tumors. Oncology. Including cancer and carcinogens

Country of publisher: United Kingdom

Language of fulltext: English

Full-text formats available: PDF, HTML

 

AUTHORS


Li D

Ni XF

Tang H

Zhang J

Zheng C

Lin J

Wang C

Sun L

Chen B

EDITORIAL INFORMATION

Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 16 weeks

 

Abstract | Full Text

Ding Li,1,* Xiao-Feng Ni,1,* Hengjie Tang,1,* Jiecheng Zhang,1 Chenlei Zheng,1 Jianhu Lin,1 Cheng Wang,1 Linxiao Sun,1 Bicheng Chen1,2 1Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China; 2Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China*These authors contributed equally to this workCorrespondence: Bicheng Chen; Linxiao Sun Email [email protected]; [email protected]: Pancreatic cancer (PC) is one of the most well-known malignancies with high mortality, but the underlying mechanism of PC remains unknown. Keratin17 (KRT17) expression has been reported in many malignancies, but its functions in PC are not clear. The aim of our study was to evaluate KRT17 expression and its potential role in PC.Methods: The online databases GEPIA and THPA were used to identify KRT17 expression in tissues. Quantitative real-time PCR (qRT-PCR) was used to determine KRT17 expression in cell lines. Ki67 and ROS levels were detected by immunofluorescence assay and a 2ʹ,7ʹ-dichlorodihydrofluorescein diacetate (DCFH-DA) probe. KRT17 downregulation was induced by the small interfering RNA (siRNA) technique. Proliferation function was evaluated by colony formation assay and RTCA. Migration and invasion were evaluated by transwell migration assay. A Western blot assay was used to detect protein levels.Results: KRT17 was overexpressed in PC tissues compared to that in normal tissues. The results showed that Ki67 and ROS levels were decreased in pancreatic cancer cells after transfection with siKRT17. After KRT17 downregulation in PC cell lines, cell viability functions, including proliferation, migration and invasion, and mTOR/S6K1 phosphorylation levels were attenuated.Conclusion: KRT17 knockdown significantly inhibited proliferation, migration and invasion in pancreatic cancer cells.Keywords: KRT17, knockdown, proliferation, migration, invasion, pancreatic cancer, mTOR/S6K1