Applied Sciences (May 2020)

Material Flow Behavior on Weld Pool Surface in Plasma Arc Welding Process Considering Dominant Driving Forces

  • Manh Ngo Huu,
  • Anh Nguyen Van,
  • Tuan Nguyen Van,
  • Dang Tran Hai,
  • Thanh Nguyen Van,
  • Dung Nguyen Tien,
  • Thanh-Hai Nguyen

DOI
https://doi.org/10.3390/app10103569
Journal volume & issue
Vol. 10, no. 10
p. 3569

Abstract

Read online

In this study, the effect of oxygen in the shielding gas on the material flow behavior of the weld pool surface was discussed to clarify the dominant driving weld pool force in keyhole plasma arc welding (KPAW). To address this issue, the convection flow on the top surface of weld pool was observed using a high-speed video camera. The temperature distribution on the surface along keyhole wall was measured using the two-color pyrometry method to confirm the Marangoni force activity on the weld pool. The results show that the inclination angle of the keyhole wall (keyhole shape) increased especially near the top surface due to the decrease in the surface tension of weld pool through surface oxidation when a shielding gas of Ar + 0.5% O2 was used. Due to the change in the keyhole shape, the upward and backward shear force compositions created a large inclination angle at the top surface of the keyhole. From the temperature measurement results, the Marangoni force was found to alter the direction when 0.5% O2 was mixed with the shielding gas. The shear force was found to be the strongest force among the four driving forces. The buoyant force and Lorentz force were very weak. The Marangoni force was stronger than the Lorentz force but was weaker than shear force. The interaction of shear force and Marangoni force controlled the behavior and speed of material flow on the weld pool surface. A strong upward and backward flow was observed in the case of mixture shielding gas, whereas a weak upward flow was observed for pure Ar. The heat transportation due to the weld pool convection significantly changed when only a small amount of oxygen was admixed in the shielding gas. The results can be applied to control the penetration ratio in KPAW.

Keywords