Open Mathematics (Jun 2023)

A non-smooth Brezis-Oswald uniqueness result

  • Mosconi Sunra

DOI
https://doi.org/10.1515/math-2022-0594
Journal volume & issue
Vol. 21, no. 1
pp. 55 – 64

Abstract

Read online

We classify the non-negative critical points in W01,p(Ω){W}_{0}^{1,p}\left(\Omega ) of J(v)=∫ΩH(Dv)−F(x,v)dx,J\left(v)=\mathop{\int }\limits_{\Omega }\hspace{0.15em}H\left(Dv)-F\left(x,v){\rm{d}}x, where HH is convex and positively pp-homogeneous, while t↦∂tF(x,t)/tp−1t\hspace{0.33em}\mapsto \hspace{0.33em}{\partial }_{t}F\left(x,t)\hspace{0.1em}\text{/}\hspace{0.1em}{t}^{p-1} is non-increasing. Since HH may not be differentiable and FF has a one-sided growth condition, JJ is only lower semi-continuous on W01,p(Ω){W}_{0}^{1,p}\left(\Omega ). We use a weak notion of critical point for non-smooth functionals, derive sufficient regularity of the latter without an Euler-Lagrange equation available, and focus on the uniqueness part of the results in the study of Brezis and Oswald, using a non-smooth Picone inequality.

Keywords